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Equal-Time Second-Order Moments of a 
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Using a simple matrix method, we have obtained exact second-order equilibrium 
moments for a linearly damped harmonic oscillator with a fluctuating frequency 
o3(t) and driven by a fluctuating forcef(t).  We have assumed each of  the fluctuating 
quantities to be delta-correlated. We demonstrate that the final answers are iden- 
tical whether f ( t )  and a~(t) are statistically independent or delta-correlated. We 
have also established the region of  parameter space in which the oscillator is 
energetically stable. The results are shown to be completely determined by the 
coefficients of the first and second cumulants of  the fluctuations. 

KEY WORDS:  Harmonic oscillator; stochastic frequency; stochastic dif- 
ferential equation; stability. 

1. I N T R O D U C T I O N  
The generic problem of a linear oscillator driven by an additive fluctuating 
force and having a fluctuating frequency has received considerable attention 
recently/1-6) Physical systems whose dynamics can be modeled by such an 
oscillator include spins precessing in a fluctuating magnetic field, ~2) waves 
propagating through a random medium, ~7'8) and low-amplitude wind-driven 
waves on the ocean surface. (9) 

Van Kampen ~4) has shown that one can construct a variety of linear 
oscillators with fluctuating parameters. Each of  these oscillators has distinct 
properties and care must be exercised in associating a given oscillator with a 
given physical system. In this paper we restrict our attention to a mechanical 
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oscillator whose equation of motion for the displacement x( t )  is (3'6) 

2 ( 0  + 2,~k(t) + co2(t)x(t)  -=J(t) (1.1) 

where 2 is a damping parameter. The random forcef ( t )  is zero-centered and 
delta-correlated, i.e., 

f ( t )  = 0 (l.2a) 

f ( t ) f ( t ' )  = 2/) 3(t - t') (1.2b) 

The bars in (1.2) denote averages over an ensemble of realizations o f f ( t ) .  It 
will become clear later that the higher moments o f f ( t )  need not be specified. 
The fluctuating frequency co(t) is also assumed to be delta-correlated. In most 
physical systems it seems reasonable to assume that the correlation of co(t) and 
f ( t ' )  is of one of the following two types. I f  the sources of  the frequency and 
force fluctuations are physically independent, then co(t) and f ( t ' )  are uncor- 
related for all times t and t'. I f  the fluctuations have a common physical 
source, then co(t) and f ( t ' )  are delta-correlated. In either case we express 
the fluctuating frequency as 

co2(t) = [~Oo + 6co(t)] 2 

= < [ c o o  + ' ~ ( 0 1 2 >  + {[~Oo + &o(t)]  2 - < [ ~ o  + ~co(t)]=>} 

--- f2o 2 + ~(t) (1.3) 

where the angular brackets indicate an ensemble average over the realizations 
of 7(0- Note that the brackets denote an average over the same ensemble as 
the bar in (1.2) when the source of the fluctuations in co(t) and f ( t )  is the 
same. In Eq. (1.3), ~'~0 2 ~ ( [ 0 )  0 -~- 6co(t)] 2) is defined such that the distribu- 
tion of the fluctuations in the square of  the frequency has zero mean, i,e., 

(7 (0)  = 0 (1.4a) 

The assumed delta correlation of the frequency fluctuations is expressed by 
the cumulant relations 

((y(tx)7(t2) "--y(t,))) = 2"D,cS(tl - t2) "'" cS(t,_ i - t,) (1.4b) 

Note that the distribution of 7(0 canno t  be Gaussian if one insists that the 
oscillator frequency be real at all times. 

In Section 2 we introduce the equations of motion for the second-order 
moments of  the oscillator position and momentum,  and obtain their equi- 
librium solution. Section 3 contains an analysis of  the stability properties of  
the second moments as a function of the parameter  values. The results are 
summarized and discussed in Section 4, 
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2. M A T R I X  E Q U A T I O N S  A N D  E Q U I L I B R I U M  P R O P E R T I E S  

We rewrite the oscillator equation (1.1) as the set of two first-order 
equations 

= p (2. l a) 

b = -f~o 2x - 7(t)x -- 22p +f(t)  (2. lb) 

The properties of the solution of the stochastic differential equations (2.1) are 
given by the moments of the distribution of x(t) and p(t). Here we restrict our 

analysis to the equal-time second-order statistics (x2(t)), @2(07, and 

(x(t)p(t)) in the case wheref(t)  and 7(0 are statistically independent. In the 
Appendix we show that all of our results remain unchanged when ~,(t) and 
f(t) are delta-correlated. 

We begin by constructing the equation of evolution for the column 
matrix Y(t) defined by 

\ x(t)p(t)/ 

The equation of evolution for Y(t) is 

Y(t) = - [ Z  o + ~/(t)Z1-]Y(t ) + d (2.3) 

where the elements of Zo, Z1, and d are obtained by appropriate multiplica- 
tion of Eqs. (2.1 a) and (2. l b) by x(t) and p(t) followed by an average over an 
ensemble of realizations off ( t ) .  The resulting matrices are 

0 1]  
Zo = 42 ~'~0 2 

2~0 2 - 2  22 / 

Z I =  0 

0 

(2.3a) 

(2.3b) 

(0) 
d =  p(t)f(t) (2.3c) 

\ x(t)f(t) 

To proceed further, we must perform the averages indicated in the 
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inhomogeneous  term (2.3c). F r o m  (2. l a) and (2. l b) we write, with At > O, 

x ( t ) f ( t )  -- x ( t  -- A t ) f  (t) = p ( t  - A t ) f  ( t)  At  (2.4) 

and 

p ( t ) f ( t )  - p ( t  - A t ) f  (t) = - n o 2 x ( t  - A t ) f  ( t)  At  - dt '  x ( t ' ) y ( t ' ) f ( t )  

-- 22p(t - A t ) f  ( t )  A t  + d r ' f ( t ' ) f ( t  ) (2.5) 
- A t  

For  del ta-correlated fluctuations f ( t ) ,  it follows f rom causali ty that  

x( t  - A t ) f  (t) = p ( t  - A t ) f  (t) = 0 (2.6) 

F r o m  (2.4) it then follows that  

x ( t ) f ( t )  = 0 (2.7) 

Equat ion  (2.5) then reduces in the same limit to 

p ( t ) f ( t )  = lim dt' f ( t ' ) f ( t )  = 13 (2.8) 
A t e 0  --At 

where we have used the statistical independence of  y(t) and f ( t ) .  Thus  the 
inhomogeneous  te rm in Eq. (2.3) becomes 

(0 d = ( 2 . 9 )  

To obta in  an explicit solution for  (2.3) it is convenient  to introduce the 
interact ion representat ion 

y(t) - [exp(Zot)]Y(t)  (2.10) 

The equat ion of  evolut ion in this new variable is 

~(t) = - y( t )z( t )y( t )  + ~ ( t )  (2.11) 

where 

z(t) = [exp(Zot)]Z1 e x p ( - Z o t ) ,  ~ ( t )  = [exp(Zot)]d  (2.12) 

The  solution of  (2.11) averaged over  an ensemble  of  f requency fluctuations is 
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(Y(t)) = (T exp[- fl dz Y(z)z(z)l)Y(O) 

+ ~i dtl (Texp[- f~ dz T(z)z(z)l)~(t~) (2.13) 

where we have introduced the time ordering operator T. 
The averages occurring in (2.13) can be reexpressed as an exponential 

that contains sums over cumulants of  7(z) of the form t2'4'5) 

( ( ~ ( ~ . )  ' ~(~ 0 ) ) z ( ~ . )  "" z(T1) 

Since the frequency fluctuations are assumed to be delta-correlated, the cumu- 
lants vanish unless the time arguments are all equal. It then follows from Eqs. 
(2.12) and (2.3b) that for equal time arguments 

z"(z) = 0 for n ~> 3 (2.14) 

This is an important observation, since now all contributions beyond the 
second cumulant vanish and Eq. (2.13) simplifies to 

where D - D 2. 
Rather than taking the limit t --~ m of  (2.15) to obtain the equilibrium 

averages, it is simpler to construct the transport equation 

d 
dt (y( t ) )  = Dz2(t)(y(t)) + ~(t) (2.16) 

by taking the derivative of(2.15). If the oscillator is stable (cf. Section 3), then 
the equilibrium matrix ( Y ) e q  = l i m t ~ ( Y ( t ) )  can be found by setting [see 
Eq. (2.10)3 

d (V(t))  = d dt ~-] (y( t ) )  - Zo<y(t)) = 0 (2.17) 

Using (2. l 7) in (2.16) and transforming back to the original representation 
gives 

O Z l 2 ( y ) e q  + d - -  Z o ( Y ) e  q = 0 (2.18) 
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whose solution is 

( Y)eq  = ( Z o  --  DZx2) - l d  - (2 .19)  
2(22~o 2 - D) 

The equilibrium second-order moments of the oscillator displacement and 
momentum are then 

( x2 )eq = / ) / ( 2~o  2 --  D )  (2,20a) 

(2.20b) 

(2.20c) ( X p ) e q  = 0 

Bourret e t  al. (3) have considered the same problem with frequency 
fluctuations modeled as a two-valued Markov process with a finite correlation 
time. Their results reduce to (2.20) in the limit that their correlation function 
approaches a delta function. Our procedure is technically simpler than theirs 
for delta-correlated fluctuations and clearly shows that in the case of delta- 
correlated fluctuations in the force f ( t )  and frequency co(t) the results are 
c o m p l e t e l y  determined by the first- and second-order statistical properties of 
the force f luctuat ionsf( t )  and the coefficients of the first- and second-order 
cumulants of the frequency fluctuations 7(0. 

We note from (2.20b) that the oscillator still maintains an asymptotic 
equipartition of energy, albeit in terms of the shifted frequency f~o 2. The only 
other effect of  the frequency fluctuations is to increase both the mean square 
displacement and the mean square momentum of  the oscillator. This effect 
may be interpreted as an effective broadening of the distribution of additive 
fluctuations in a Wang-Uhlenbeck oscillator ~176 of appropriate frequency. 3 

3. STABIL ITY OF S E C O N D  M O M E N T S  

The oscillator (1.1) is referred to as "energetically stable" if all the quad- 
ratic moments relax to zero asymptotically in the absence of a driving term. (3~ 
The time evolution of the quadratic moments whenf( t )  = 0 is found by trans- 
forming (2.16) back to the original representation and setting d = 0, i.e., 

( Y ( t ) )  = ( D Z 1 2  - Zo)(Y(t))  (3.1) 

The solution of (3.1) is 

(Y(t))  = {exp[(DZ, 2 - Zo)t]}Y(0) (3.2) 

As t -+ ~ ,  (Y(t))  -+ 0 provided the eigenvalues of the matrix in the 

s For a more detailed interpretation see Lindenberg et al. (11) 
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exponent  of  (3.2) have negative real parts .  The eigenvalue equat ion is readily 
obta ined f rom (2.3a) and (2.3b) to be 

De t [DZ12  - Zo - e I ]  = e 3 + 62e 2 + 4(~o 2 + 222)e 

- -  4 ( D  - -  2 ) ~ o  2) = 0 ( 3 . 3 )  

where E is the eigenvalue and I is the 3 x 3 unit  matrix.  The  roots  o f  (3.3) are 

q = A + B - 2 2  (3.4a) 

e2 = - 2 2  - (A + B) /2  + i x / 3 ( A  - B) /2  (3.4b) 

E3 = - 2 2  - (A + B) /2  - i x / 3  (A - B) /2  (3.4c) 

where 

A = {2D + [4D 2 + (4cox2)311/2}1/3 (3.5a) 

B = {2D - [4D 2 + (~eq2)321/2} 1/3 (3.5b) 

with co~ 2 = ~o 2 - 22. 
To  obta in  the sign o f  the real parts  o f  the roots  (3.4), two cases must  be 

distinguished. 

3.1. U n d e r d a m p e d  Osci l la tor  

I f  the pa rame te r  values are such that  

4D 2 + (~(D12) 3 > 0 (3.6) 

then bo th  A and B can be chosen to be real. I t  then follows f rom (3.4) and 
(3.5) that  q is real and e2 and ~3 are complex  conjugates.  Since we can con- 
clude f rom (3.5) that  A > 0, B < 0, and IAI > IB[, we immediate ly  have f rom 
(3.4b) and (3.4c) that  

Re e 2 = Re e3 = - 2 2 -  (A + B) /2  < 0 (3.7) 

for  all values of  the parameters .  The sign o f q  canno t  be determined as readily 
f rom (3.4a). To  obtain  this sign, we note  that  the cons tant  term in (3.3) is 
related to the p roduc t  o f  the roots  by 

4(D - 22~o 2) = qe2e3 = qlE2[ 2 (3.8) 

Hence,  

q < 0 iff 22 > D/f~o z (3.9) 

This relat ion between the damping  coefficient 22 and the ratio D/f~o 2 is thus 
the condi t ion for  energetic stability o f  the u n d e r d a m p e d  oscillator. 

The in terpre ta t ion  o f  (3.6) as the unde rdamping  condi t ion is very 
interesting. In the absence o f  the f requency f luctuations 7(t), the oscillator is 
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underdamped when 2 < f~o. Condition (3.6) modifies this requirement. The 
system retains its oscillatory character even for values of the damping coeffi- 
cient 2 > f~o, provided (3.6) is satisfied. The frequency fluctuations can thus 
be thought of as decreasing the "effective" damping of the transients of the 
second moments of the oscillator. However, we have shown elsewhere (6~ that 

the damping of the equilibrium correlation functions (x(t)x(t  + z)) and 

(p(t)p(t  + z))  is not modified by the frequency fluctuations. 

3.2. Overdamped Oscillator 

In this case the parameter values are such that 

4D 2 + (~-0)12) 3 < 0 (3.10) 

and the quantities A and B of  Eq. (3.5) are complex. All the roots (3.4) can 
be shown by standard methods to be real. An analysis of A and B expressed 
in terms of an amplitude and a phase (A =- re i~ = B*) leads to the conclusion 
that two of the three roots are negative for all parameter values and the third 
is negative provided 

22 > D/~o 2 (3.11) 

This inequality is thus again the condition for energetic stability. 
The analysis for critical damping [4D 2 + (~co12) 3 -- 0] obviously also 

leads to condition (3.11) for stability. 
We finally note that since the stability analysis is carried out in the 

absence of the stochastic driving force f ( t ) ,  the results do not depend on 
whether f ( t )  and the frequency fluctuations 7(0 are or are not correlated. 

4. C O N C L U S I O N S  

We have presented a simple method for calculating the first and second 
moments of the Wang-Uhlenbeck oscillator ~1~ with a fluctuating frequency. 
Our results were obtained for delta-correlated fluctuations. The main 
conclusions from our analysis are: 

1. The equilibrium second-order moments of the oscillator displacement 
and momentum depend only on the first- and second-order statistical 
properties of the force fluctuations. This is true even when the force 
fluctuations f ( t )  have a finite correlation time. 

2. The equilibrium second-order moments of the oscillator depend only 
on the coefficient of the second cumulant of the frequency fluctuations 7(0 
and are independent of the higher cumulant coefficients. 

3. The equilibrium second-order moments, although still maintaining 
equipartition of energy, are increased in magnitude by the presence of the 
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frequency fluctuations. The ratio of the second-order moments in the absence 

and presence of the frequency fluctuations, i.e., (x2)D=o/(X2)v~o , is 
1 - D/22f2o 2. This result was also obtained by Bourret eta/. (a) for a specific 
statistical model of the fluctuating frequency in the limit that these fluctua- 
tions become delta-correlated. 

4. The oscillator is energetically stable provided the damping is suffi- 
ciently strong. The specific condition for stability is given by 22 > O/~2o 2. One 
way to interpret this condition is that the frequency fluctuations add energy to 
the oscillator with rate constant D/f~o z. In order for the oscillator to be ener- 
getically stable, the dissipation rate must be sufficiently high to remove energy 
more rapidly than it is being added. (11) Bourret et al.(3) have also found this to 
be the condition for stability for their specific process in the delta-correlated 
limit. 

A P P E N D I X  

We show that the results obtained in Section 2 remain unchanged when 
the fluctuationsf(t) and y(t) are delta-correlated. We begin by defining a two- 
component stochastic column vector w(t) by 

w(t) = (x ( t ) ]  (A.1) 
\p(t)J 

The equations of motion (2.1 a) and (2.1 b) can be expressed in terms of this 
vector as 

,#(t) = - [ W o  + 7(t)W1]w(t) +f ( t )W2 (A.2) 

where 

A formal time integration of (A.2) yields 

w(t) = [exp(-Wot)] fl dtl T{exp[- ~' 7(T)Wl(~)]} 
x [exp(Wota)]f(q)W2 (A.4) 

where we have taken w(0) = 0 since we are interested only in the long-time 
behavior of the solution. In Eq. (A.4), T denotes forward time ordering 
and "~YC~(t) is the matrix W~ in the interaction representation, i.e., 

W~(t) = exp(Wot ) Wl exp( -Wot )  (A.5) 
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The second-order moments (x2(t)), (p2(t)), and (x(t)p(t)) can be found 
by constructing the direct product 

(;([~)) =(x2(t) x(t)p(O) 
w(t) | = (x(t)p(t)) \p(t)x(t) PZ(t) } (A.6) 

and averaging over the fluctuations. From (A.4) we have 

(w(t) |  = {[exp(-Wot)]fldtl{Texpl-f~7(z)Wl(z)i} 

x [exp(WotO]f(tOW2} 

| 

x {T e x p f -  f '  7(z)Vq~(z)]}[exp(- W~ t)]} (A.7) 

where T denotes backward time ordering. 
All we wish to show here is that a delta-correlation of 7(0 andf( t ' )  does 

not affect the results of Section 2. To do this, all we need to show is that 
terms involving averages of products of 7 and f do not contribute to (A.7). 
When the time-ordered exponentials in (A.7) are expanded, there occur terms 
of the form 

[-V~ll('~n ) ..-W1('~1 ) [exp(Wotl)]W2] 

| [W + [exp(W~- t2)] W1 (z,,') "" Vr (zl')] 

x (y(z,) - '-7(zl)f(tl)f(t2)y(zl '  ) "" 7(Zm')) (A.8) 

The average (7(z.)..-7(zm')) in (A.8) can be expressed in terms of sums of 
products of cumulants. Two types of cumulants occur. In one type, f and 7 
occur in separate cumulants, e.g., 

( (f(tOf(tz) ) )( (V(z.) "'" y(zm')) ) 

Such terms also occur when f and y are not correlated and are therefore 
included in the results of Section 2. The other types of cumulants that occur 
contain bo th fand  7, e.g., ( ( 7(z x)f(t l)f(t2))) and various higher order terms. 
These are the terms that do not occur w h e n f a n d  7 are statistically indepen- 
dent, and we will show that for delta-correlated f and 7, these terms still do 
not contribute to (A.7). To see this let us take the simplest term of this kind, 
namely, the one that only involves the cumulant ((7(z t ) f ( t  1)f(t2))).  Because 
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the delta-correlation of 7 and f implies that we must have z 1 = t 1 = t 2, the 
matrix product in (A.8) corresponding to this term involves 

Wl[W2 |  = 0 0 

i.e., the contribution vanishes due to the symmetry of  W1 and WE. It  is now 
easy to see that this property and the time-ordering restriction will cause every 
term that involves mixed cumulants to vanish. 

NOTE A D D E D  IN PROOF 

Some of the results found in this paper have been obtained earlier 
for Gaussian delta-correlated fluctuations. Relevant references include 
T. K. Caughey, J. Acoust. Soc. Am. 32:1356 (1960); T. K. Caughey and 
J. K. Dienes, J. Math. andPhys. 41:300 (1962); M. A. Leibowitz, J. Math. 
Phys. 4:852 (1963). 
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